summary refs log tree commit diff
path: root/22.22/part2.py
blob: 378f44809d1d337ed7465472449653c74744edbb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
from sys import stdin
from math import *
import re

data = stdin.readlines()
path = data[-1]
data = [list(line.strip('\n')) for line in data[:-2]]

area = len([c for c in sum(data, start=[]) if not c.isspace()])
sideLen = int(sqrt(area / 6))

def dot(a, b):
    assert len(a) == len(b)
    return sum([i*j for i,j in zip(a, b)])

def matmul(a, b):
    # matrix storage is flipped
    # that is - [[1,2,3]] is a column vector
    if type(b) == list:
        # matrix * matrix
        assert len(a) == len(b[0])
        m = [[0] * len(a[0]) for _ in b]
        for i in range(len(m[0])):
            for j in range(len(m)):
                m[j][i] = dot(b[j], [col[i] for col in a])
        return m
    else:
        # matrix * scalar
        return [[n * b for n in col] for col in a]

def matadd(a, b):
    assert len(a) == len(b)
    assert len(a[0]) == len(b[0])
    m = [[0] * len(a[0]) for _ in a]
    for i in range(len(m[0])):
        for j in range(len(m)):
            m[j][i] = a[j][i] + b[j][i]
    return m

def only(a):
    assert len(a) == 1
    return a[0]

def gen3Drots():
    # base, 3 axis
    rots = [[[0, 1, 0],
             [-1, 0, 0],
             [0, 0, 1]],
            [[0, 0, 1],
             [0, 1, 0],
             [-1, 0, 0]],
            [[1, 0, 0],
             [0, 0, 1],
             [0, -1, 0]]]

    # gen flipped
    rots2 = []
    for rot in rots:
        rots2.append(rot)
        rots2.append(matmul(matmul(rot, rot), rot))

    # ensure they're proper rotations
    for rot in rots2:
        rot2 = rot
        for _ in range(4):
            rot2 = matmul(rot, rot2)
        assert rot == rot2
    return rots2

rots = gen3Drots()

# vertexes of each face's corners
# the edge (wall[f]; wall[f+1]) is the edge towards facing f
wall = [[[ 1, -1, 1]],
        [[ 1,  1, 1]],
        [[-1,  1, 1]],
        [[-1, -1, 1]]]

def step(wall, f):
    def edge(f):
        v1 = wall[f%4]
        v2 = wall[(f+1)%4]
        return matmul(matadd(v1, v2), 0.5)
    shared = edge(f) # the shared edge
    prev = edge(f+2) # the edge opposite to shared; will become shared after rot

    rot = only([rot for rot in rots if matmul(rot, prev) == shared])
    wall = [matmul(rot, v) for v in wall]
    return rot, wall

# generate projections from face of 3d cube to 2d square
def genProjs():
    from itertools import permutations
    projs = []
    for a in [-1, 1]:
        for b in [-1, 1]:
            base = [[a, 0], [0, b], [0, 0]]
            for p in permutations(base):
                p = list(p)
                projs.append(p)
    return projs
projs = genProjs()

def planestep(x, y, f):
    x += [1, 0, -1, 0][f]
    y += [0, 1, 0, -1][f]
    if not 0 <= y < len(data): return None
    if not 0 <= x < len(data[y]): return None
    if data[y][x].isspace(): return None
    return (x, y, f)

def cubestep(x, y, f):
    if planestep(x, y, f) != None: return planestep(x, y, f)

    bwall = [[[ 1, -1, 1]],
             [[ 1,  1, 1]],
             [[-1,  1, 1]],
             [[-1, -1, 1]]]
    def edge(wall, f):
        v1 = wall[f%4]
        v2 = wall[(f+1)%4]
        return matmul(matadd(v1, v2), 0.5)

    shared = edge(bwall, f)
    visited = set()
    def rec(bx, by, bwall):
        nonlocal visited
        visited.add((bx, by))
        for f in range(4):
            wx = bx + [1, 0, -1, 0][f] * sideLen
            wy = by + [0, 1, 0, -1][f] * sideLen
            if (wx, wy) in visited: continue
            if not 0 <= wy < len(data): continue
            if not 0 <= wx < len(data[wy]): continue
            if data[wy][wx].isspace(): continue
            visited.add((wx, wy))

            _, wall = step(bwall, f)
            for f in range(4):
                e = edge(wall, f)
                if e == shared:
                    return (wx, wy, wall)
            r = rec(wx, wy, wall)
            if r != None:
                return r
    wx, wy, wall = rec(x, y, bwall)

    # bwall is the base face, wall is the face we move to

    # wx, wy are some coordinates inside of the face - convert to upleft corner
    wx = wx // sideLen * sideLen
    wy = wy // sideLen * sideLen

    # find the correct projection from cube space to input space
    def isGoodProj(p):
        for vid in range(4):
            v1 = matmul(p, wall[vid])
            v2 = [bwall[vid][0][:2]]
            if v1 != v2: return False
        return True
    proj = only([p for p in projs if isGoodProj(p)])

    # coordinates in the wall before rotation
    bx = (x + [1, 0, -1, 0][f]) % sideLen
    by = (y + [0, 1, 0, -1][f]) % sideLen

    # vertex on starting face of cube
    v = [[bx - (sideLen-1)/2, by - (sideLen-1)/2, 1]]

    # rotate to new face
    rot, _ = step(bwall, f)
    v = matmul(rot, v)

    # project to input space
    v = matmul(proj, v)
    v = [[int(f + (sideLen+1)/2) - 1 for f in v[0]]] # wall coords


    # find new facing
    # shared - old facing relative to original wall
    dv = matmul(proj, matmul(rot, shared))
    def dvToFacing(dv):
        for f in range(4):
            dx = [1, 0, -1, 0][f]
            dy = [0, 1, 0, -1][f]
            if dv[0][0] == dx and dv[0][1] == dy:
                return f
        raise "fuck"

    return wx + v[0][0], wy + v[0][1], dvToFacing(dv)

def vis():
    for line in data:
        print(''.join(line))

def move(x, y, f, d):
    for _ in range(d):
        nx, ny, nf = cubestep(x, y, f)
        if data[ny][nx] == '#':
            break
        data[y][x] = ">v<^"[f]
        x, y, f = nx, ny, nf
    return x, y, f

def partTwo():
    x = data[0].index('.')
    y = 0
    f = 0
    for c in re.findall("\d+|[A-Z]", path):
        if c == 'L': f = (f - 1) % 4
        elif c == 'R': f = (f + 1) % 4
        else:
            x, y, f = move(x, y, f, int(c))
    return (y+1) * 1000 + (x+1) * 4 + f

print(partTwo())