;; N =S ;; Z = Z ;; V ~ P ;; C= C ;; ;; =CCR= == z80== ;; XNZVC SZ5H3PNC ;; 00000 00000000 ;; 00001 00000001 ;; 00010 00000100 ;; 00011 00000101 ;; 00100 01000000 ;; 00101 01000001 ;; 00110 01000100 ;; 00111 01000101 ;; 01000 10000000 ;; 01001 10000001 ;; 01010 10000100 ;; 01011 10000101 ;; 01100 11000000 ;; 01101 11000001 ;; 01110 11000100 ;; 01111 11000101 ;; 10000 00000000 ;; 10001 00000001 ;; 10010 00000100 ;; 10011 00000101 ;; 10100 01000000 ;; 10101 01000001 ;; 10110 01000100 ;; 10111 01000101 ;; 11000 10000000 ;; 11001 10000001 ;; 11010 10000100 ;; 11011 10000101 ;; 11100 11000000 ;; 11101 11000001 ;; 11110 11000100 ;; 11111 11000101 ;; Routine to set the given flags ;; Noted in \1 by a 1 bit F_SET MACRO or.b \1,flag_byte or.b \1,flag_valid ENDM ;; Clear the given flags ;; Noted in \1 (must be a reg) by a 1 bit F_CLEAR MACRO or.b \1,flag_valid not.b \1 and.b \1,flag_byte ENDM ;; Use this when an instruction uses the P/V bit as Parity. ;; Sets or clears the bit explicitly. ;; ;; Byte for which parity is calculated must be in \1. (d1 ;; destroyed) ;; XXX that's expensive. After making this a subroutine, to speed up parity computation, maybe you could use a 256-byte lookup table accessed by d(pc,ix.w). ;; And if you have a spare address register, since xxx.l addressing mode is expensive speed-wise and size-wise (4 bytes + relocation), ;; you should use lea d(pc) to preload the address of flag_valid into an address register, ;; and then use (an) and d(an) to write to flag_valid and flag_byte. F_PAR MACRO move.b \1,d1 ; 4 2 lsr.w #4,d1 ; 14 2 eor.b \1,d1 ; 4 2 lsr.w #2,d1 ; 10 2 eor.b \1,d1 ; 4 2 lsr.w #1,d1 ; 8 2 eor.b \1,d1 ; 4 2 andi.b #$01,d1 ; 8 4 ;; odd parity is now in d1 ori.b #%00000100,flag_valid ; 20 8 andi.b #%11111011,flag_byte ; 20 8 rol.b #2,d1 ; 6 2 or.b d1,flag_byte ; 16 4 ENDM ;xxx cycles (!) ; xx bytes (make this a subroutine) ;; Use this when an instruction uses the P/V bit as Overflow. ;; Leaves the bit itself implicit; simply marks it dirty. F_OVFL MACRO andi.b #%11111011 ENDM ;; Save the two operands from ADD \1,\2 F_ADD_SAVE MACRO move.b \1,f_tmp_src_b move.b \2,f_tmp_dst_b move.b #$01,f_tmp_byte F_SET #% ENDM ;; Normalize and return carry bit (is loaded into Z bit) ;; Destroys d1 f_norm_c: move.b flag_valid(pc),d1 ;; XXX you could use lsr #1 (same number of cycles, smaller) + bcc.s or bcs.s here. andi.b #%00000001,d1 bne.s FNC_ok ; Bit is valid move.b f_host_ccr(pc),d1 andi.b #%00000001,d1 ;; XXX see above comment for using lea and then d(an) if you have a spare register. or.b d1,flag_byte ori.b #%00000001,flag_valid FNC_ok: move.b flag_byte(pc),d1 andi.b #%00000001,d1 rts ;; Normalize and return zero bit (loaded into Z bit) ;; Destroys d1 f_norm_z: move.b flag_valid(pc),d1 andi.b #%01000000,d1 bne.s FNZ_ok ; Bit is valid move.b f_host_ccr(pc),d1 andi.b #%01000000,d1 ;; XXX see above comment for using lea and then d(an) if you have a spare register. or.b d1,flag_byte ori.b #%01000000,flag_valid FNZ_ok: move.b flag_byte(pc),d1 andi.b #%01000000,d1 rts ;; Routine to turn 68k flags into z80 flags. ;; Preconditions: ;; Flags to change are noted in d0 by a 1 bit flags_normalize: move.b f_host_ccr(pc),d1 ;; XXX .w because you don't want garbage in bits 8-15 when using d(pc,ix.w) or d(an,ix.w) ea mode. andi.w #%00011111,d1 ; Maybe TI uses the reserved bits for ; something ... move.b lut_ccr(pc,d1.w),d1 ;; XXX do this rts storage: ;; 1 if tmp_???b is valid, 0 if tmp_???w is valid f_tmp_byte: ds.b 0 ;; 2 if P is 0, 3 if P is 1, 4 if P is Parity, 5 if P is oVerflow f_tmp_p_type: ds.b 0 ;; byte operands f_tmp_src_b: ds.b 0 f_tmp_dst_b: ds.b 0 f_tmp_result_b: ds.b 0 EVEN f_tmp_src_w: ds.w 0 f_tmp_dst_w: ds.w 0 f_tmp_result_w: ds.w 0 flag_n: ds.w 0 ;; 000XNZVC EVEN ; Compositing a word from two bytes ... f_host_sr: ds.b 0 f_host_ccr: ds.b 0 EVEN flag_byte: ds.b 0 ; Byte of all flags flag_valid: ds.b 0 ; Validity mask -- 1 if valid. ;; LUT for the CCR -> F mapping lut_ccr: dc.b %00000000 dc.b %00000001 dc.b %00000100 dc.b %00000101 dc.b %01000000 dc.b %01000001 dc.b %01000100 dc.b %01000101 dc.b %10000000 dc.b %10000001 dc.b %10000100 dc.b %10000101 dc.b %11000000 dc.b %11000001 dc.b %11000100 dc.b %11000101 dc.b %00000000 dc.b %00000001 dc.b %00000100 dc.b %00000101 dc.b %01000000 dc.b %01000001 dc.b %01000100 dc.b %01000101 dc.b %10000000 dc.b %10000001 dc.b %10000100 dc.b %10000101 dc.b %11000000 dc.b %11000001 dc.b %11000100 dc.b %11000101