summaryrefslogtreecommitdiff
path: root/ir.c
blob: a9fcd44ab7041380843f5cbb4c9e924781416a27 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
#include <stdarg.h>
#include <assert.h>

#include "ir.h"
#include "strio.h"

extern int no_opt;

/* convenience macros (lisp-inspired lol) */

#define IN(n, i) ((n)->in.data[i])
#define OUT(n, i) ((n)->out.data[i])

#define CTRL(n) IN(n, 0)
#define CAR(n) IN(n, 1)
#define CDR(n) IN(n, 2)
#define CAAR(n) CAR(CAR(n))
#define CADR(n) CDR(CAR(n))
#define CDAR(n) CAR(CDR(n))
#define CDDR(n) CDR(CDR(n))
#define CAAAR(n) CAR(CAAR(n))
#define CAADR(n) CDR(CAAR(n))
#define CADAR(n) CAR(CADR(n))
#define CADDR(n) CDR(CADR(n))
#define CDAAR(n) CAR(CDAR(n))
#define CDADR(n) CDR(CDAR(n))
#define CDDAR(n) CAR(CDDR(n))
#define CDDDR(n) CDR(CDDR(n))
#define T(a,b) ((a)->type == b)
#define T2(a,b,t) ((a)->type == t && (b)->type == t)

/* types */

int type_eql(Type *a, Type *b) {
	if (a->t != b->t) return 0;
	if (a->lvl != b->lvl) return 0;
	if (a->next != b->next) return 0;
	return a->next ? type_eql(a->next, b->next) : 1;
}

int type_base_eql(Type *a, Type *b) {
	if (a->t != b->t) return 0;
	if (a->next != b->next) return 0;
	return a->next ? type_base_eql(a->next, b->next) : 1;
}

int value_eql(Value *a, Value *b) {
	if (!type_eql(&a->type, &b->type)) return 0;
	return a->i == b->i;
}

Str type_desc(Type *t, Arena *arena) {
	(void)arena;
	switch (t->lvl) {
	case T_CTRL: return S("ctrl");
	case T_XCTRL: return S("~ctrl");
	default: break;
	}
	switch (t->t) {
	case T_TUPLE: return S("tuple");
	case T_BOOL: return S("bool");
	case T_INT: return S("i64");
	case T_PTR: return str_fmt(arena, "^%S", type_desc(t->next, arena));
	default: return S("N/A");
	}
}

void type_err(Node *n, Lexer *l) {
	Str s = S("");
	for (int i = 0; i < n->in.len; i++) {
		if (i > 0) str_cat(&s, S(", "), &l->arena);
		str_cat(&s, type_desc(&IN(n, i)->val.type, &l->arena), &l->arena);
	}
	lex_error_at(l, n->src_pos, LE_ERROR, str_fmt(&l->arena, "type error %s (%S)", node_type_name(n->type), s));
}

int type_check(Node *n) {
	switch (n->type) {
	case N_PHI:
		n->val.type = (Type) { .lvl = T_TOP, .t = IN(n, 1)->val.type.t };
		for (int i = 2; i < n->in.len; i++) {
			if (!type_base_eql(&IN(n, i)->val.type, &n->val.type)) {
				return 0;
			}
		}
		return 1;
	case N_OP_NEG:
		n->val.type = (Type) { .lvl = T_TOP, .t = T_INT };
		return CAR(n)->val.type.t == T_INT;
	case N_OP_NOT:
		n->val.type = (Type) { .lvl = T_TOP, .t = CAR(n)->val.type.t };
		return CAR(n)->val.type.t == T_INT || CAR(n)->val.type.t == T_BOOL;
	case N_OP_AND: case N_OP_OR: case N_OP_XOR:
		n->val.type = (Type) { .lvl = T_TOP, .t = CAR(n)->val.type.t };
		return (CAR(n)->val.type.t == T_INT && CDR(n)->val.type.t == T_INT)
			|| (CAR(n)->val.type.t == T_BOOL && CDR(n)->val.type.t == T_BOOL);
	case N_OP_ADD: case N_OP_SUB: case N_OP_MUL: case N_OP_DIV:
	case N_OP_SHL: case N_OP_SHR:
		n->val.type = (Type) { .lvl = T_TOP, .t = T_INT };
		return CAR(n)->val.type.t == T_INT && CDR(n)->val.type.t == T_INT;
	case N_CMP_LES: case N_CMP_GTR:
	case N_CMP_LTE: case N_CMP_GTE:
		n->val.type = (Type) { .lvl = T_TOP, .t = T_BOOL };
		return CAR(n)->val.type.t == T_INT && CDR(n)->val.type.t == T_INT;
	case N_CMP_EQL:
	case N_CMP_NEQ:
		n->val.type = (Type) { .lvl = T_TOP, .t = T_BOOL };
		return type_base_eql(&CAR(n)->val.type, &CDR(n)->val.type);
			/* (CAR(n)->val.type.t == T_INT && CDR(n)->val.type.t == T_INT)
			|| (CAR(n)->val.type.t == T_BOOL && CDR(n)->val.type.t == T_BOOL); */
	default:
		return 1;
	}
}

/* nodes */

const char *node_type_name(NodeType t) {
	const char *names[] = {
		"N/A",
		"start", "if-else", "region", "phi", "stop",
		"projection",
		"return",
		"keepalive",
		"literal",
		"add", "sub", "mul", "div",
		"and", "or", "xor",
		"lshift", "rshift",
		"neg", "not",
		"equal",
		"not-equal",
		"less",
		"greater",
		"less-or-equal",
		"greater-or-equal",
		"value"
	};
	return names[t];
}

void node_die(Node *n, Proc *p) {
	assert(n->refs == 0);
	n->prev_free = p->free_list;
	p->free_list = n;
}

void node_del_out(Node *n, Node *p) {
	for (int i = n->out.len - 1; i >= 0; i--) {
		if (n->out.data[i] == p) {
			if (p) p->refs--;
			n->out.len--;
			if (i < n->out.len) {
				n->out.data[i] = n->out.data[n->out.len];
			}
			break;
		}
	}
}

void node_del_in(Node *n, Node *p) {
	for (int i = n->in.len - 1; i >= 0; i--) {
		if (n->in.data[i] == p) {
			if (p) p->refs--;
			n->in.len--;
			if (i < n->in.len) {
				memmove(&n->in.data[i], &n->in.data[i + 1], sizeof(Node*) * (n->in.len - i));
			}
			break;
		}
	}
}

void node_kill(Node *n, Proc *p) {
	if (p->ctrl == n) {
		/* probably this is fine */
		p->ctrl = CTRL(n);
	}
	while (n->refs > 0 && n->in.len > 0) node_remove(p, n->in.data[0], n);
	while (n->refs > 0 && n->out.len > 0) node_remove(p, n, n->out.data[0]);
	assert(n->refs == 0);
}

void node_add_out(Proc *p, Node *a, Node *b) {
	ZDA_PUSH(&p->arena, &a->out, b);
	if (b) b->refs++;
}

void node_add_in(Proc *p, Node *a, Node *b) {
	ZDA_PUSH(&p->arena, &a->in, b);
	if (b) b->refs++;
}

void node_add(Proc *p, Node *src, Node *dest) {
	node_add_in(p, dest, src);
	if (!src) return;
	node_add_out(p, src, dest);
	if (dest->src_pos.n == 0) dest->src_pos = src->src_pos;
	else if (src->src_pos.n != 0) {
		int lo = dest->src_pos.ofs < src->src_pos.ofs ? dest->src_pos.ofs : src->src_pos.ofs;
		int hi = dest->src_pos.ofs + dest->src_pos.n > src->src_pos.ofs + src->src_pos.n ? dest->src_pos.ofs + dest->src_pos.n : src->src_pos.ofs + src->src_pos.n;
		dest->src_pos = (LexSpan) { lo, hi - lo };
	}
}

void node_remove(Proc *p, Node *src, Node *dest) {
	node_del_in(dest, src);
	if (dest->refs < 1) node_die(dest, p);
	if (src) {
		node_del_out(src, dest);
		if (src->out.len < 1) node_kill(src, p);
	}
}

static int global_node_count = 0;

Node *node_new_empty(Proc *p, NodeType t) {
	Node *n;
	if (p->free_list) {
		n = p->free_list;
		p->free_list = n->prev_free;
		memset(n, 0, sizeof(Node));
	} else {
		n = new(&p->arena, Node);
	}
	n->type = t;
	n->id = global_node_count++;
	return n;
}

int type_check(Node *);
Node *node_newv(Proc *p, NodeType t, Node *ctrl, ...) {
	Node *node = node_new_empty(p, t);
	va_list ap;
	va_start(ap, ctrl);
	node_add(p, ctrl, node);
	for (;;) {
		Node *n = va_arg(ap, Node *);
		if (!n) break;
		node_add(p, n, node);
	}
	va_end(ap);
	return node;
}

Node *node_dedup_lit(Proc *p, Value v) {
	/* TODO: this is probably real inefficient for large procedure graphs,
	 * but does it matter? how many nodes are direct children of the start node?
	 * how many literals even usually occur in a procedure? */
	for (int i = 0; i < p->start->out.len; i++) {
		Node *t = p->start->out.data[i];
		if (t->type == N_LIT && type_eql(&t->val.type, &v.type) && t->val.i == v.i) {
			return t;
		}
	}
	return NULL;
}

Node *node_new_lit(Proc *p, Value v) {
	Node *t = node_dedup_lit(p, v);
	if (t) return t;
	Node *n = node_new(p, N_LIT, NULL, p->start);
	n->val = v;
	return n;
}

Node *node_new_lit_i64(Proc *p, int64_t i) {
	return node_new_lit(p, (Value) { { .lvl = T_CONST, .t = T_INT }, { .i = i } });
}

Node *node_new_lit_bool(Proc *p, int b) {
	return node_new_lit(p, (Value) { { .lvl = T_CONST, .t = T_BOOL }, { .i = b } });
}

static inline int node_op_communative(NodeType t) {
	NodeType ops[] = { N_OP_ADD, N_OP_MUL, N_OP_AND, N_OP_XOR, N_OP_OR, N_CMP_EQL, N_CMP_NEQ };
	for (unsigned i = 0; i < sizeof ops / sizeof *ops; i++) {
		if (ops[i] == t) return 1;
	}
	return 0;
}

static inline int node_op_associative(NodeType t) {
	NodeType ops[] = { N_OP_ADD, N_OP_MUL, N_OP_AND, N_OP_XOR, N_OP_OR };
	for (unsigned i = 0; i < sizeof ops / sizeof *ops; i++) {
		if (ops[i] == t) return 1;
	}
	return 0;
}

static inline int node_op_comparison(NodeType t) {
	NodeType ops[] = { N_CMP_EQL, N_CMP_NEQ, N_CMP_LES, N_CMP_GTR, N_CMP_LTE, N_CMP_GTE };
	for (unsigned i = 0; i < sizeof ops / sizeof *ops; i++) {
		if (ops[i] == t) return 1;
	}
	return 0;
}

/* when applied to the same input, at least one must be true */
static inline NodeType node_cmp_opposite(NodeType a) {
	struct { NodeType l, r; } pairs[] = {
		{ N_CMP_EQL, N_CMP_NEQ },
		{ N_CMP_LES, N_CMP_GTE },
		{ N_CMP_GTR, N_CMP_LTE },
	};
	for (unsigned i = 0; i < sizeof pairs / sizeof *pairs; i++) {
		if (pairs[i].l == a) return pairs[i].r;
		if (pairs[i].r == a) return pairs[i].l;
	}
	return N_NONE;
}

static inline NodeType node_cmp_flip_sign(NodeType a) {
	switch (a) {
	case N_CMP_LES: return N_CMP_GTR;
	case N_CMP_LTE: return N_CMP_GTE;
	case N_CMP_GTR: return N_CMP_LES;
	case N_CMP_GTE: return N_CMP_LTE;
	default: return a;
	}
}

/* when applied to the same input, at least one must be false */
static inline int node_cmp_incompat(NodeType a, NodeType b) {
	struct { NodeType l, r; } pairs[] = {
		{ N_CMP_EQL, N_CMP_NEQ },
		{ N_CMP_LES, N_CMP_GTE },
		{ N_CMP_GTR, N_CMP_LTE },
		{ N_CMP_LES, N_CMP_GTR },
	};
	for (unsigned i = 0; i < sizeof pairs / sizeof *pairs; i++) {
		if ((pairs[i].l == a && pairs[i].r == b) || (pairs[i].l == b && pairs[i].r == a)) {
			return 1;
		}
	}
	return 0;
}

Value node_compute(Node *n, Lexer *l) {
	Type lit_type = { .lvl = T_BOT };
	for (int i = 1; i < n->in.len; i++) {
		Node *p = IN(n, i);
		if (p->val.type.lvl != T_CONST) {
			lit_type.lvl = T_BOT;
			break;
		}
		if (!type_eql(&p->val.type, &lit_type)) {
			if (lit_type.lvl == T_BOT) {
				lit_type = p->val.type;
			} else {
				lit_type.lvl = T_BOT;
				break;
			}
		}
	}

	if (lit_type.lvl != T_CONST) return n->val;

	Value v = { .type = lit_type };

	if (lit_type.t == T_INT) {
		switch (n->type) {
		case N_OP_NEG: v.i = -CAR(n)->val.i; break;
		case N_OP_NOT: v.i = ~CAR(n)->val.i; break;
		case N_OP_ADD: v.i = CAR(n)->val.i + CDR(n)->val.i; break;
		case N_OP_SUB: v.i = CAR(n)->val.i - CDR(n)->val.i; break;
		case N_OP_MUL: v.i = CAR(n)->val.i * CDR(n)->val.i; break;
		case N_OP_DIV:
		       if (CDR(n)->val.i == 0) {
			       lex_error_at(l, CDR(n)->src_pos, LE_ERROR, S("divisor always evaluates to zero"));
		       }
		       v.i = CAR(n)->val.i / CDR(n)->val.i;
		       break;
		case N_OP_AND: v.i = CAR(n)->val.i & CDR(n)->val.i; break;
		case N_OP_OR: v.i = CAR(n)->val.i | CDR(n)->val.i; break;
		case N_OP_XOR: v.i = CAR(n)->val.i ^ CDR(n)->val.i; break;
		case N_OP_SHL: v.i = CAR(n)->val.u << CDR(n)->val.u; break;
		case N_OP_SHR: v.i = CAR(n)->val.u >> CDR(n)->val.u; break;
		case N_CMP_EQL: v.type.t = T_BOOL; v.i = CAR(n)->val.i == CDR(n)->val.i; break;
		case N_CMP_NEQ: v.type.t = T_BOOL; v.i = CAR(n)->val.i != CDR(n)->val.i; break;
		case N_CMP_LES: v.type.t = T_BOOL; v.i = CAR(n)->val.i < CDR(n)->val.i; break;
		case N_CMP_GTR: v.type.t = T_BOOL; v.i = CAR(n)->val.i > CDR(n)->val.i; break;
		case N_CMP_LTE: v.type.t = T_BOOL; v.i = CAR(n)->val.i <= CDR(n)->val.i; break;
		case N_CMP_GTE: v.type.t = T_BOOL; v.i = CAR(n)->val.i >= CDR(n)->val.i; break;
		default: return n->val;
		}
		return v;
	} else if (lit_type.t == T_BOOL) {
		switch (n->type) {
		case N_OP_NOT: v.i = !CAR(n)->val.i; break;
		case N_CMP_EQL: v.i = CAR(n)->val.i == CDR(n)->val.i; break;
		case N_CMP_NEQ: v.i = CAR(n)->val.i != CDR(n)->val.i; break;
		case N_OP_AND: v.i = CAR(n)->val.i && CDR(n)->val.i; break;
		case N_OP_OR: v.i = CAR(n)->val.i || CDR(n)->val.i; break;
		case N_OP_XOR: v.i = CAR(n)->val.i ^ CDR(n)->val.i; break;
		default: return n->val;
		}
		return v;
	}

	return n->val;
}

#include <stdio.h>

#define NODE(t, ...) node_peephole(node_new(p, t, CTRL(n), __VA_ARGS__), p, l)
#define OP(...) NODE(n->type, __VA_ARGS__)

static inline int node_eql_i64(Node *n, int64_t i) {
	return n->type == N_LIT && n->val.type.t == T_INT && n->val.i == i;
}

static inline int u64_power_of_2(uint64_t x) {
	int ldz = 0, tlz = 0;
	for (int i = 0; i < 64; i++) {
		if ((x >> i) & 1) break;
		else tlz++;
	}
	for (int i = 0; i < 64; i++) {
		if ((x << i) & (1UL << 63)) break;
		else ldz++;
	}
	if (ldz + tlz != 63) return 0;
	return tlz;
}

/* functions to query the compile-time equivalence of nodes */
/* fairly conservative of necessity */

static int node_equiv(Node *a, Node *b);
static int node_known_neg_of(Node *a, Node *b) {
	if (T(b, N_OP_NEG) && node_equiv(a, CAR(b))) return 1;
	if (T(a, N_OP_NEG) && node_equiv(CAR(a), b)) return 1;
	if (T(a, N_LIT) && T(b, N_LIT) && (a->val.type.t == b->val.type.t) && b->val.i == -a->val.i) return 1;
	return 0;
}

static inline int node_sub_add_equiv(Node *a, Node *b) {
	if (node_equiv(CAR(a), CAR(b)) && !node_known_neg_of(CDR(a), CDR(b))) return 1;
	if (node_equiv(CAR(a), CDR(b)) && !node_known_neg_of(CDR(a), CAR(b))) return 1;
	return 0;
}

static int node_equiv_input(Node *a, Node *b);

static int node_equiv(Node *a, Node *b) {
	/* will doing this recursively be too slow? */
	if (a == b) return 1;
	if (a->type != b->type) return 0;
	if (a->in.len != b->in.len) return 0;
	if (!value_eql(&a->val, &b->val)) return 0;
	if (!node_equiv_input(a, b)) return 0;
	return 1;
}

/* TODO: figure out a more thorough way of comparing node graphs */

static inline int node_known_not_equiv_ord(Node *a, Node *b) {
	if ((T(b, N_OP_ADD) || T(b, N_OP_SUB)) && node_equiv(a, CAR(b))
			&& T(CDR(b), N_LIT) && !node_eql_i64(CDR(b), 0)) return 1;
	if (T(a, N_OP_SUB) && T(b, N_OP_ADD) && node_sub_add_equiv(a, b)) return 1;
	return 0;
}
static inline int node_known_not_equiv(Node *a, Node *b) {
	return node_known_not_equiv_ord(a, b) || node_known_not_equiv_ord(b, a);
}

static int node_equiv_input(Node *a, Node *b) {
	if (a->in.len != b->in.len) return 0;
	if (CTRL(a) != CTRL(b)) return 0;
	/* note that this means the order of inputs isn't guaranteed, so be
	 * careful what you use this procedure for */
	if ((node_op_communative(a->type) || node_op_communative(b->type))
			&& node_equiv(CDR(a), CAR(b))
			&& node_equiv(CAR(a), CDR(b))) {
		/* assuming input count is 2 */
		return 1;
	}
	for (int i = 1; i < a->in.len; i++) {
		if (!node_equiv(IN(a, i), IN(b, i))) return 0;
	}
	return 1;
}

Node *node_new_zero(Proc *p, Node *n) {
	Value v = {
		.type = {
			.lvl = T_CONST,
			.t = n->val.type.t,
		},
		.i = 0
	};
	Node *r = node_new_lit(p, v);
	return r;
}

static inline int is_zero(Node *n) {
	return n->val.type.lvl == T_CONST && (n->val.type.t == T_INT || n->val.type.t == T_BOOL) && !n->val.i;
}

/* needs lexer for error reporting */
Node *node_idealize(Node *n, Proc *p, Lexer *l) {
	if (!type_check(n)) {
		type_err(n, l);
	}

	if (no_opt) return NULL;

	/* try to compute a literal value */

	if (n->type != N_LIT) {
		Value v = node_compute(n, l);
		if (v.type.lvl == T_CONST) {
			Node *t = node_dedup_lit(p, v);
			if (t) return t;
			Node *r = node_new(p, N_LIT, NULL, p->start);
			r->val = v;
			r->src_pos = n->src_pos;
			return r;
		}
	}

	/* try to trim duplicate inputs from the graph */

	int same = 1, same_ptr = 1;
	for (int i = 1; i < n->in.len; i++) {
		if (IN(n, i) == CAR(n)) continue;
		same_ptr = 0;
		if (!node_equiv(IN(n, i), CAR(n))) {
			same = 0;
			break;
		}
	}

	if (n->in.len > 2 && same && !same_ptr) {
		Node *r = node_new(p, n->type, NULL);
		for (int i = 0; i < n->in.len; i++) {
			node_add(p, CAR(n), r);
		}
		return node_peephole(r, p, l);
	}

	/* transformations to help encourage constant folding */
	/* the overall trend is to move them rightwards */

	/* need to check for type compatibility */
	#define C(a, b) type_eql(&(a)->val.type, &(b)->val.type)
	if (node_op_communative(n->type)) {
		/* op(lit, X) -> op(X, lit) */
		if (T(CAR(n), N_LIT) && !T(CDR(n), N_LIT)) return OP(CDR(n), CAR(n));

		/* op(X, not(Y)) -> op(not(Y), X) */
		/* shuffle not left to avoid conflict w/ literals */
		if (T(CDR(n), N_OP_NOT) && !T(CAR(n), N_OP_NOT)) {
			return NODE(n->type, CDR(n), CAR(n));
		}

		if (T(CAR(n), N_PHI) && T(CDR(n), N_PHI) && CTRL(CAR(n)) == CTRL(CDR(n))
				&& ((node_equiv(CAAR(n), CDAR(n)) && node_equiv(CADR(n), CDDR(n)))
				|| (node_equiv(CADR(n), CDAR(n)) && node_equiv(CAAR(n), CDDR(n))))) {
			return OP(CAAR(n), CDAR(n));
		}
	}

	if (node_op_associative(n->type)) {
		/* op(X, op(Y,Z)) -> op(op(Y,Z), X) */
		/*if (!T(CAR(n), n->type) && T(CDR(n), n->type)
				&& C(CAR(n), CDAR(n))) return OP(CDR(n), CAR(n));*/

		/* op(op(X,Y), op(Z, lit)) -> op(op(X, op(Y, Z)), lit) */
		if (T2(CAR(n), CDR(n), n->type) && T(CDDR(n), N_LIT)
				&& C(CAAR(n), CDAR(n)) && C(CAR(n), CDR(n))) {
			return OP(OP(CAAR(n), OP(CADR(n), CDAR(n))), CDDR(n));
		}

		/* op(op(X, lit), lit) -> op(X, op(lit, lit)) */
		if (T(CDR(n), N_LIT) && T(CAR(n), n->type)
				&& !T(CAAR(n), N_LIT) && T(CADR(n), N_LIT)
				&& C(CADR(n), CDR(n))) {
			return OP(CAAR(n), OP(CADR(n), CDR(n)));
		}

		/* op(op(X, lit), Y) -> op(op(X, Y), lit) */
		if (T(CAR(n), n->type) && !T(CAAR(n), N_LIT)
				&& T(CADR(n), N_LIT) && !T(CDR(n), N_LIT)
				&& C(CADR(n), CDR(n))) {
			return OP(OP(CAAR(n), CDR(n)), CADR(n));
		}
	}

	/* optimize based on situations where the input is partly known (e.g.
	 * one constant input and one not, or identical inputs) */

#define INT_EQ(n, v) ((n)->val.type.lvl == T_CONST && (n)->val.type.t == T_INT && (n)->val.i == v)
#define BOOL_EQ(n, v) ((n)->val.type.lvl == T_CONST && (n)->val.type.t == T_BOOL && (n)->val.i == v)

	switch (n->type) {
	case N_OP_NOT:
		{
			NodeType op = node_cmp_opposite(CAR(n)->type);
			if (op != N_NONE) return NODE(op, CAAR(n), CADR(n));
		}
		/* fallthrough */
	case N_OP_NEG:
		if (T(CAR(n), n->type)) return CAAR(n);
		break;
	case N_OP_ADD:
		if (same) return NODE(N_OP_MUL, CAR(n), node_new_lit_i64(p, 2));
		if (CAR(n)->val.type.t == T_INT) {
			/* a + ~a = -1 */
			if (T(CAR(n), N_OP_NOT) && node_equiv(CAAR(n), CDR(n))) return node_new_lit_i64(p, -1);
			if (T(CDR(n), N_LIT) && CDR(n)->val.i < 0) return NODE(N_OP_SUB, CAR(n), node_new_lit_i64(p, -CDR(n)->val.i));
		}
		if (T(CAR(n), N_OP_NEG)) return NODE(N_OP_SUB, CDR(n), CAAR(n));
		if (T(CDR(n), N_OP_NEG)) return NODE(N_OP_SUB, CAR(n), CDAR(n));
		if (T(CAR(n), N_OP_SUB) && T(CDR(n), N_OP_SUB)
			&& node_equiv(CAAR(n), CDDR(n)) && node_equiv(CADR(n), CDAR(n))) {
			return node_new_lit_i64(p, 0);
		}
		goto zero_no_effect;
	case N_OP_SUB:
		if (same) return node_new_lit_i64(p, 0);
		if (node_eql_i64(CAR(n), 0)) return NODE(N_OP_NEG, CDR(n));
		if (node_eql_i64(CDR(n), 0)) return CAR(n);
		break;
	case N_OP_MUL:
		if (node_eql_i64(CDR(n), 0)) return CDR(n);
		if (node_eql_i64(CDR(n), 1)) return CAR(n);
		{
			int po2;
			if (T(CDR(n), N_LIT) && CDR(n)->val.type.t == T_INT && (po2 = u64_power_of_2(CDR(n)->val.u))) {;
				return NODE(N_OP_SHL, CAR(n), node_new_lit_i64(p, po2));
			}
		}
		break;
	case N_OP_DIV:
		if (node_eql_i64(CDR(n), 0)) {
		       lex_error_at(l, CDR(n)->src_pos, LE_ERROR, S("divisor always evaluates to zero"));
		}
		{
			int po2;
			if (T(CDR(n), N_LIT) && CDR(n)->val.type.t == T_INT && (po2 = u64_power_of_2(CDR(n)->val.u))) {;
				return NODE(N_OP_SHR, CAR(n), node_new_lit_i64(p, po2));
			}
		}
		break;
	case N_OP_OR:
		if (same) return CAR(n);
		if (is_zero(CDR(n))) return CAR(n);
		if (BOOL_EQ(CDR(n), 1)) return CDR(n);
		if (CDR(n)->type == node_cmp_opposite(CAR(n)->type) && node_equiv_input(CAR(n), CDR(n))) {
			return node_new_lit_bool(p, 1);
		}
		if (T(CAR(n), N_CMP_LES) && T(CDR(n), N_CMP_EQL) && node_equiv_input(CAR(n), CDR(n))) {
			return NODE(N_CMP_LTE, CAAR(n), CADR(n));
		}
		if (T(CAR(n), N_CMP_EQL) && T(CDR(n), N_CMP_LES) && node_equiv_input(CAR(n), CDR(n))) {
			return NODE(N_CMP_LTE, CDAR(n), CDDR(n));
		}
		if (T(CAR(n), N_CMP_GTR) && T(CDR(n), N_CMP_EQL) && node_equiv_input(CAR(n), CDR(n))) {
			return NODE(N_CMP_GTE, CAAR(n), CADR(n));
		}
		if (T(CAR(n), N_CMP_EQL) && T(CDR(n), N_CMP_GTR) && node_equiv_input(CAR(n), CDR(n))) {
			return NODE(N_CMP_GTE, CDAR(n), CDDR(n));
		}
		goto zero_no_effect;
	case N_OP_AND:
		if (same) return CAR(n);
		if (BOOL_EQ(CDR(n), 1)) return CAR(n);
		if (is_zero(CDR(n))) return node_new_zero(p, CDR(n));
		if (T(CAR(n), N_OP_NOT) && node_equiv(CAAR(n), CDR(n))) return node_new_zero(p, CDR(n));
		if (node_cmp_incompat(CAR(n)->type, CDR(n)->type) && node_equiv_input(CAR(n), CDR(n))) {
			return node_new_lit_bool(p, 0);
		}
		break;
	case N_OP_XOR:
		if (same) return node_new_zero(p, CAR(n));
		if (CDR(n)->type == node_cmp_opposite(CAR(n)->type) && node_equiv_input(CAR(n), CDR(n))) {
			return node_new_lit_bool(p, 1);
		}
		/* ~bool ^ bool = 1 */
		/* ~i64 ^ i64 = -1 */
		if (T(CAR(n), N_OP_NOT) && node_equiv(CAAR(n), CDR(n))) {
			if (CDR(n)->val.type.t == T_INT) return node_new_lit_i64(p, -1);
			if (CDR(n)->val.type.t == T_BOOL) return node_new_lit_bool(p, 1);
		}
zero_no_effect:	if (node_eql_i64(CAR(n), 0)) return CDR(n);
		if (node_eql_i64(CDR(n), 0)) return CAR(n);
		break;
	case N_CMP_EQL:
		if (same) return node_new_lit_bool(p, 1);
		if (node_known_not_equiv(CAR(n), CDR(n))) return node_new_lit_bool(p, 0);
		if (BOOL_EQ(CDR(n), 1)) return CAR(n);
		if (BOOL_EQ(CDR(n), 0)) return NODE(N_OP_NOT, CAR(n));
		if (T(CAR(n), N_OP_NOT) && node_equiv(CDR(n), CAAR(n))) return node_new_lit_bool(p, 0);
		break;
	case N_CMP_NEQ:
		if (same) return node_new_lit_bool(p, 0);
		if (node_known_not_equiv(CAR(n), CDR(n))) return node_new_lit_bool(p, 1);
		if (BOOL_EQ(CDR(n), 0)) return CAR(n);
		if (BOOL_EQ(CDR(n), 1)) return NODE(N_OP_NOT, CAR(n));
		break;
	case N_CMP_LES:
		if (same) return node_new_lit_bool(p, 0);
		break;
	case N_CMP_GTR:
		if (same) return node_new_lit_bool(p, 0);
		break;
	case N_CMP_LTE:
		if (same) return node_new_lit_bool(p, 1);
		break;
	case N_CMP_GTE:
		if (same) return node_new_lit_bool(p, 1);
		break;

	case N_IF_ELSE:
		if (T(CAR(n), N_LIT)) {
			if (CAR(n)->val.i) {
				n->val.tuple.data[1].type.lvl = T_XCTRL;
			} else {
				n->val.tuple.data[0].type.lvl = T_XCTRL;
			}
		}
		break;

	case N_PROJ:
		if (T(CTRL(n), N_IF_ELSE) && CTRL(n)->val.type.t == T_TUPLE) {
			if (CTRL(n)->val.tuple.data[(n->val.i + 1) % CTRL(n)->val.tuple.len].type.lvl == T_XCTRL) {
				return CTRL(CTRL(n));
			}
		}
		break;

	case N_PHI:
		if (same) return CAR(n);
		if (IN(CTRL(n), 1)->val.type.lvl == T_XCTRL) return CAR(n);
		if (IN(CTRL(n), 0)->val.type.lvl == T_XCTRL) return CDR(n);
		break;

	default:
		break;
	}

	if (node_op_comparison(n->type)) {
		/* cmp(2a, a + b) -> cmp(a, b) */
		if (T(CAR(n), N_OP_SHL) && T(CDR(n), N_OP_ADD) && node_eql_i64(CADR(n), 1)) {
			if (node_equiv(CAAR(n), CDAR(n))) return NODE(n->type, CAAR(n), CDDR(n));
			if (node_equiv(CAAR(n), CDDR(n))) return NODE(n->type, CAAR(n), CDAR(n));
		}
		if (T(CDR(n), N_OP_SHL) && T(CAR(n), N_OP_ADD) && node_eql_i64(CDDR(n), 1)) {
			if (node_equiv(CDAR(n), CAAR(n))) return NODE(n->type, CDAR(n), CADR(n));
			if (node_equiv(CDAR(n), CADR(n))) return NODE(n->type, CDAR(n), CAAR(n));
		}
		/* cmp(a + b, a + c) -> cmp(b, c) */
		if (node_op_associative(CAR(n)->type) && T(CAR(n), CDR(n)->type)) {
			if (node_equiv(CAAR(n), CDAR(n))) return NODE(n->type, CADR(n), CDDR(n));
			if (node_equiv(CADR(n), CDAR(n))) return NODE(n->type, CAAR(n), CDDR(n));
			if (node_equiv(CAAR(n), CDDR(n))) return NODE(n->type, CADR(n), CDAR(n));
			if (node_equiv(CADR(n), CDDR(n))) return NODE(n->type, CAAR(n), CDAR(n));
		}
		if (T2(CAR(n), CDR(n), N_OP_SUB)) {
			/* cmp(a - b, b - a) -> cmp(a, b) */
			if (node_equiv(CAAR(n), CDDR(n)) && node_equiv(CADR(n), CDAR(n))) {
				return NODE(n->type, CAAR(n), CDAR(n));
			}
			/* cmp(a - b, c - b) -> flipcmp(a, c) */
			if (node_equiv(CAAR(n), CDAR(n))) {
				return NODE(node_cmp_flip_sign(n->type), CADR(n), CDDR(n));
			}
		}
		/* cmp(-a, -b) -> flipcmp(a, b) */
		if (T2(CAR(n), CDR(n), N_OP_NEG)) {
			return NODE(node_cmp_flip_sign(n->type), CAAR(n), CDAR(n));
		}
	}

	return NULL;
}

Node *node_peephole(Node *n, Proc *p, Lexer *l) {
	assert(n->refs > 0);
	Node *r = node_idealize(n, p, l);
	if (r) {
		r->src_pos = n->src_pos;
		NODE_KEEP(p, r, node_kill(n, p));
		return r;
	}
	/* FIXME: figure out why this shows the wrong position when in an assignment */
	return n;
}

/* procedures */

void proc_init(Proc *proc, Str name) {
	memset(proc, 0, sizeof(Proc));
	proc->start = node_new(proc, N_START, NULL);
	proc->start->val.type = (Type) {
		.lvl = T_BOT,
		.t = T_TUPLE,
		.next = NULL
	};
	proc->stop = node_new(proc, N_STOP, NULL);
	proc->ctrl = proc->start;
	proc->keepalive = node_new(proc, N_KEEPALIVE, NULL);
	proc->name = name;
}

void proc_free(Proc *proc) {
	arena_free(&proc->arena);
}

/* scope */

NameBinding *scope_find(Scope *scope, Str name) {
	for (ScopeFrame *f = scope->tail; f; f = f->prev) {
		for (NameBinding *b = f->latest; b; b = b->prev) {
			if (str_eql(b->name, name)) {
				return b;
			}
		}
	}
	return NULL;
}

ScopeFrame *scope_push(Scope *scope, Proc *proc) {
	ScopeFrame *f;
	if (scope->free_scope) {
		f = scope->free_scope;
		*f = (ScopeFrame) { 0 };
		scope->free_scope = f->prev;
	} else {
		f = new(&proc->arena, ScopeFrame);
	}
	f->prev = scope->tail;
	scope->tail = f;
	return f;
}

ScopeFrame *scope_pop(Scope *scope, Proc *proc) {
	ScopeFrame *f = scope->tail;
	scope->tail = f->prev;
	f->prev = scope->free_scope;
	scope->free_scope = f;
	for (NameBinding *b = f->latest; b; ) {
		NameBinding *p = b->prev;
		b->prev = scope->free_bind;
		scope->free_bind = b;
		node_remove(proc, b->node, proc->keepalive);
		b = p;
	}
	return scope->tail;
}

/* returns previous value */
NameBinding *scope_bind(Scope *scope, Str name, Node *value, LexSpan pos, Proc *proc) {
	NameBinding *prev = scope_find(scope, name);
	NameBinding *b;
	if (scope->free_bind) {
		b = scope->free_bind;
		*b = (NameBinding) { 0 };
		scope->free_bind = b->prev;
	} else {
		b = new(&proc->arena, NameBinding);
	}
	b->name = name;
	b->prev = scope->tail->latest;
	scope->tail->latest = b;
	b->node = value;
	b->src_pos = pos;
	node_add(proc, value, proc->keepalive);
	return prev;
}

NameBinding *scope_update(NameBinding *b, Node *to, Proc *proc) {
	Node *n = b->node;
	node_add(proc, to, proc->keepalive);
	b->node = to;
	node_remove(proc, n, proc->keepalive);
	return b;
}

/* adds to keepalive so these aren't invalidated */
void scope_collect(Scope *scope, Proc *proc, ScopeNameList *nl, Arena *arena) {
	for (ScopeFrame *f = scope->tail; f; f = f->prev) {
		for (NameBinding *b = f->latest; b; b = b->prev) {
			node_add(proc, b->node, proc->keepalive);
			ZDA_PUSH(arena, nl, (ScopeName) { b->name, b->node });
		}
	}
}

void scope_uncollect(Scope *scope, Proc *proc, ScopeNameList *nl) {
	for (int i = 0; i < nl->len; i++) {
		node_remove(proc, nl->data[i].node, proc->keepalive);
	}
}