summaryrefslogtreecommitdiff
path: root/peephole.c
blob: 06ded1a8c749e0a78e57120e4d9ca8c51179fdef (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
#include <stdarg.h>
#include <assert.h>
#include <stdio.h>

#include "peephole.h"
#include "strio.h"

extern int no_opt;

#define NM_COMMUTATIVE (NM_OP_ADD | NM_OP_MUL | NM_OP_AND | NM_OP_XOR | NM_OP_OR | NM_CMP_EQL | NM_CMP_NEQ)
#define NM_ASSOCIATIVE (NM_OP_ADD | NM_OP_MUL | NM_OP_AND | NM_OP_XOR | NM_OP_OR)
#define NM_COMPARISON (NM_CMP_EQL | NM_CMP_NEQ | NM_CMP_LES | NM_CMP_GTR | NM_CMP_LTE | NM_CMP_GTE)
#define NM_IDEMPOTENT (NM_OP_AND | NM_OP_OR)

#define C(a, b) type_base_eql(&(a)->type, &(b)->type)
#define INT_EQ(n, v) ((n)->type.lvl == T_CONST && (n)->type.t == T_INT && (n)->val.i == v)
#define BOOL_EQ(n, v) ((n)->type.lvl == T_CONST && (n)->type.t == T_BOOL && (n)->val.i == v)

/* when applied to the same input, at least one must be true */
static inline NodeType node_cmp_opposite(NodeType a) {
	switch (a) {
	case N_CMP_EQL: return N_CMP_NEQ;
	case N_CMP_NEQ: return N_CMP_EQL;
	case N_CMP_LES: return N_CMP_GTE;
	case N_CMP_GTE: return N_CMP_LES;
	case N_CMP_GTR: return N_CMP_LTE;
	case N_CMP_LTE: return N_CMP_GTR;
	default: return N_NONE;
	}
}

static inline NodeType node_cmp_flip_sign(NodeType a) {
	switch (a) {
	case N_CMP_LES: return N_CMP_GTR;
	case N_CMP_LTE: return N_CMP_GTE;
	case N_CMP_GTR: return N_CMP_LES;
	case N_CMP_GTE: return N_CMP_LTE;
	default: return a;
	}
}

/* when applied to the same input, at least one must be false */
static inline int node_cmp_incompat(NodeType a, NodeType b) {
	struct { NodeType l, r; } pairs[] = {
		{ N_CMP_EQL, N_CMP_NEQ },
		{ N_CMP_LES, N_CMP_GTE },
		{ N_CMP_GTR, N_CMP_LTE },
		{ N_CMP_LES, N_CMP_GTR },
		{ N_CMP_LES, N_CMP_EQL },
		{ N_CMP_GTR, N_CMP_EQL },
	};
	for (unsigned i = 0; i < sizeof pairs / sizeof *pairs; i++) {
		if ((pairs[i].l == a && pairs[i].r == b) || (pairs[i].l == b && pairs[i].r == a)) {
			return 1;
		}
	}
	return 0;
}

Value node_compute(Node *n, Lexer *l) {
	Type lit_type = { .lvl = T_BOT };
	for (u32 i = 1; i < n->in.len; i++) {
		Node *p = IN(n, i);
		if (p->type.lvl != T_CONST) {
			lit_type.lvl = T_BOT;
			break;
		}
		if (!type_eql(&p->type, &lit_type)) {
			if (lit_type.lvl == T_BOT) {
				lit_type = p->type;
			} else {
				lit_type.lvl = T_BOT;
				break;
			}
		}
	}

	if (lit_type.lvl != T_CONST) return n->val;

	Value v = { .type = lit_type };

	if (lit_type.t == T_INT) {
		switch (n->op) {
		case N_OP_NEG: v.i = -CAR(n)->val.i; break;
		case N_OP_NOT: v.i = ~CAR(n)->val.i; break;
		case N_OP_ADD: v.i = CAR(n)->val.i + CDR(n)->val.i; break;
		case N_OP_SUB: v.i = CAR(n)->val.i - CDR(n)->val.i; break;
		case N_OP_MUL: v.i = CAR(n)->val.i * CDR(n)->val.i; break;
		case N_OP_DIV:
		       if (CDR(n)->val.i == 0) {
			       lex_error_at(l, CDR(n)->src_pos, LE_ERROR, S("divisor always evaluates to zero"));
		       }
		       v.i = CAR(n)->val.i / CDR(n)->val.i;
		       break;
		case N_OP_AND: v.i = CAR(n)->val.i & CDR(n)->val.i; break;
		case N_OP_OR: v.i = CAR(n)->val.i | CDR(n)->val.i; break;
		case N_OP_XOR: v.i = CAR(n)->val.i ^ CDR(n)->val.i; break;
		case N_OP_SHL: v.i = CAR(n)->val.u << CDR(n)->val.u; break;
		case N_OP_SHR: v.i = CAR(n)->val.u >> CDR(n)->val.u; break;
		case N_CMP_EQL: v.type.t = T_BOOL; v.i = CAR(n)->val.i == CDR(n)->val.i; break;
		case N_CMP_NEQ: v.type.t = T_BOOL; v.i = CAR(n)->val.i != CDR(n)->val.i; break;
		case N_CMP_LES: v.type.t = T_BOOL; v.i = CAR(n)->val.i < CDR(n)->val.i; break;
		case N_CMP_GTR: v.type.t = T_BOOL; v.i = CAR(n)->val.i > CDR(n)->val.i; break;
		case N_CMP_LTE: v.type.t = T_BOOL; v.i = CAR(n)->val.i <= CDR(n)->val.i; break;
		case N_CMP_GTE: v.type.t = T_BOOL; v.i = CAR(n)->val.i >= CDR(n)->val.i; break;
		default: return n->val;
		}
		return v;
	} else if (lit_type.t == T_BOOL) {
		switch (n->op) {
		case N_OP_NOT: v.i = !CAR(n)->val.i; break;
		case N_CMP_EQL: v.i = CAR(n)->val.i == CDR(n)->val.i; break;
		case N_CMP_NEQ: v.i = CAR(n)->val.i != CDR(n)->val.i; break;
		case N_OP_AND: v.i = CAR(n)->val.i && CDR(n)->val.i; break;
		case N_OP_OR: v.i = CAR(n)->val.i || CDR(n)->val.i; break;
		case N_OP_XOR: v.i = CAR(n)->val.i ^ CDR(n)->val.i; break;
		default: return n->val;
		}
		return v;
	}

	return n->val;
}

#define NODE(t, ...) node_peephole(node_new(p, t, CTRL(n), __VA_ARGS__), p, l)
#define OP(...) NODE(n->op, __VA_ARGS__)

static inline int node_eql_i64(Node *n, int64_t i) {
	return n->op == N_LIT && n->type.t == T_INT && n->val.i == i;
}

static inline int u64_power_of_2(uint64_t x) {
	int ldz = 0, tlz = 0;
	for (int i = 0; i < 64; i++) {
		if ((x >> i) & 1) break;
		else tlz++;
	}
	for (int i = 0; i < 64; i++) {
		if ((x << i) & (1UL << 63)) break;
		else ldz++;
	}
	if (ldz + tlz != 63) return 0;
	return tlz;
}

/* TODO:
 *
 * Implement something like
 * int node_is(Node *a, Relation r, Node *b);
 * so you can do node_is(a, LES, b).
 *
 * In theory, there are six different relations nodes can have:
 * - a = b
 * - a <> b
 * - a < b
 * - a > b
 * - a <= b
 * - a >= b
 *
 * To identify any of them is necessarily kinda recursive --- we need to walk
 * the tree of known relations.  First check to see if `a < b` is stored as an
 * axiomatically true thing in the knowledge table -- if not, we need to scan
 * through their relations, looking to see if there's any value x where a < x
 * < b --- or a < x < y < b, or a < x < y < z < b, and so on.
 *
 * Because there are six node-relations, they can be packed into a single byte.
 * They can also all be reordered (a < b = b > a), so we don't need to store a
 * different flags byte for each node --- the order of which node should be on
 * what side of the comparison is determined by their ID, low to high.
 *
 * The simplest way to store them is a 2d array, NxN where N is the number of
 * nodes.  But this quickly gets expensive:  with 1024 nodes we're already up
 * to a megabyte of space.  So instead it's probably gonna be a hash table or
 * trie, with both 32-bit node IDs mixed into one 64-bit key.  One problem,
 * though:  how do we efficiently _scan_ that space, to find those recursive
 * values?  We need to track, for each node, a list of other nodes it has
 * known-relations with.
 */

/* functions to query the compile-time equivalence of nodes */
/* fairly conservative of necessity */

static int node_equiv(Node *a, Node *b);
static int node_known_neg_of(Node *a, Node *b) {
	if (T(b, N_OP_NEG) && node_equiv(a, CAR(b))) return 1;
	if (T(a, N_OP_NEG) && node_equiv(CAR(a), b)) return 1;
	if (T(a, N_LIT) && T(b, N_LIT) && (a->type.t == b->type.t) && b->val.i == -a->val.i) return 1;
	return 0;
}

static inline int node_sub_add_equiv(Node *a, Node *b) {
	if (node_equiv(CAR(a), CAR(b)) && !node_known_neg_of(CDR(a), CDR(b))) return 1;
	if (node_equiv(CAR(a), CDR(b)) && !node_known_neg_of(CDR(a), CAR(b))) return 1;
	return 0;
}

static int node_equiv_input(Node *a, Node *b);

/* TODO: separate out equivalence as in complete identity vs. just same value */
static int node_equiv(Node *a, Node *b) {
	/* will doing this recursively be too slow? */
	if (a == b) return 1;
	if (a->op != b->op) return 0;
	if (a->in.len != b->in.len) return 0;
	if (!value_eql(&a->val, &b->val)) return 0;
	for (u32 i = 1; i < a->in.len; i++) {
		if (!node_equiv(IN(a, i), IN(b, i))) return 0;
	}
	return 1;
}

/* TODO: figure out a more thorough way of comparing node graphs */

static inline int node_known_not_equiv_ord(Node *a, Node *b) {
	if ((b->op & (NM_OP_ADD | NM_OP_SUB)) && node_equiv(a, CAR(b))
			&& T(CDR(b), N_LIT) && !node_eql_i64(CDR(b), 0)) return 1;
	if ((a->op & (NM_OP_ADD | NM_OP_SUB)) && node_sub_add_equiv(a, b)) return 1;
	return 0;
}
static inline int node_known_not_equiv(Node *a, Node *b) {
	if (node_cmp_incompat(a->op, b->op) && node_equiv_input(a, b)) return 1;
	return node_known_not_equiv_ord(a, b) || node_known_not_equiv_ord(b, a);
}

static int node_equiv_input(Node *a, Node *b) {
	if (a->in.len != b->in.len) return 0;
	//if (CTRL(a) != CTRL(b)) return 0;
	/* note that this means the order of inputs isn't guaranteed, so be
	 * careful what you use this procedure for */
	if (((NMASK(a->op) | NMASK(b->op)) & NM_COMMUTATIVE)
			&& ((node_equiv(CDR(a), CAR(b)) && node_equiv(CAR(a), CDR(b)))
			|| (node_equiv(CAR(a), CDR(b)) && node_equiv(CDR(a), CAR(b))))) {
		/* assuming input count is 2 */
		fprintf(stderr, "equiv\n");
		return 1;
	}
	for (u32 i = 1; i < a->in.len; i++) {
		if (!node_equiv(IN(a, i), IN(b, i))) return 0;
	}
	return 1;
}

Node *node_new_zero(Graph *p, Node *n) {
	Value v = {
		.type = {
			.lvl = T_CONST,
			.t = n->type.t,
		},
		.i = 0
	};
	Node *r = node_new_lit(p, v);
	return r;
}

static inline int is_zero(Node *n) {
	return n->type.lvl == T_CONST && (n->type.t == T_INT || n->type.t == T_BOOL) && !n->val.i;
}

/* needs lexer for error reporting */
Node *node_idealize(Node *n, Graph *p, Lexer *l) {
	type_check(n, l);

	/* stuff that needs to happen even if optimizations are disabled */

	/*switch (n->op) {
	case N_PHI:
		for (int i = 0; i < n->in.len; i++) {
			if (IN(n,i) && IN(n,i)->op == N_UNINIT) {
				Node *r = node_new(p, N_UNINIT, p->start);
				r->type = n->type;
				return r;
			}
		}
	default:
		break;
	}*/

	if (no_opt) return NULL;

	/* try to compute a literal value */

	if (n->op != N_LIT) {
		Value v = node_compute(n, l);
		if (v.type.lvl == T_CONST) {
			Node *t = node_dedup_lit(p, v);
			if (t) return t;
			Node *r = node_new(p, N_LIT, NULL, p->start);
			r->val = v;
			r->src_pos = n->src_pos;
			return r;
		}
	}

	/* try to trim duplicate inputs from the graph */

	int same = 1, same_ptr = 1;
	for (u32 i = 1; i < n->in.len; i++) {
		if (IN(n, i) == CAR(n)) continue;
		same_ptr = 0;
		if (!node_equiv(IN(n, i), CAR(n))) {
			same = 0;
			break;
		}
	}

	if (n->in.len > 2 && same && !same_ptr) {
		Node *r = node_new(p, n->op, NULL);
		for (u32 i = 0; i < n->in.len; i++) {
			node_add(p, CAR(n), r);
		}
		return node_peephole(r, p, l);
	}

	/* transformations to help encourage constant folding */
	/* the overall trend is to move them rightwards */

	if (NMASK(n->op) & NM_COMMUTATIVE) {
		/* op(lit, X) -> op(X, lit) */
		if (T(CAR(n), N_LIT) && !T(CDR(n), N_LIT)) return OP(CDR(n), CAR(n));

		/* op(X, not(Y)) -> op(not(Y), X) */
		/* shuffle not left to avoid conflict w/ literals */
		if (T(CDR(n), N_OP_NOT) && !T(CAR(n), N_OP_NOT)) {
			return NODE(n->op, CDR(n), CAR(n));
		}

		/* op(phi(C, A, B), phi(C, B, A)) -> op(A, B) */
		if (T(CAR(n), N_PHI) && T(CDR(n), N_PHI) && CTRL(CAR(n)) == CTRL(CDR(n))
				&& (node_equiv(CADR(n), CDAR(n)) && node_equiv(CAAR(n), CDDR(n)))) {
			return OP(CAAR(n), CADR(n));
		}
	}

	if (NMASK(n->op) & NM_ASSOCIATIVE) {
		/* op(X, op(Y,Z)) -> op(op(Y,Z), X) */
		if (!T(CAR(n), n->op) && T(CDR(n), n->op)
				&& C(CAR(n), CDAR(n))) return OP(CDR(n), CAR(n));

		/* op(op(X,Y) | op(Y,X), X) -> op(op(X, X), Y) */
		if (T(CAR(n), n->op)) {
			int leq = node_equiv(CAAR(n), CDR(n));
			int req = node_equiv(CADR(n), CDR(n));
			if (leq && !req) return OP(OP(CDR(n), CDR(n)), CADR(n));
			if (req && !leq) return OP(OP(CDR(n), CDR(n)), CAAR(n));
		}

		/* op(op(X,Y), op(Z, lit)) -> op(op(X, op(Y, Z)), lit) */
		if (T2(CAR(n), CDR(n), n->op) && T(CDDR(n), N_LIT)
				&& C(CAAR(n), CDAR(n)) && C(CAR(n), CDR(n))) {
			return OP(OP(CAAR(n), OP(CADR(n), CDAR(n))), CDDR(n));
		}

		/* op(op(X, lit), lit) -> op(X, op(lit, lit)) */
		if (T(CDR(n), N_LIT) && T(CAR(n), n->op)
				&& !T(CAAR(n), N_LIT) && T(CADR(n), N_LIT)
				&& C(CADR(n), CDR(n))) {
			return OP(CAAR(n), OP(CADR(n), CDR(n)));
		}

		/* op(op(X, lit), Y) -> op(op(X, Y), lit) */
		if (T(CAR(n), n->op) && !T(CAAR(n), N_LIT)
				&& T(CADR(n), N_LIT) && !T(CDR(n), N_LIT)
				&& C(CADR(n), CDR(n))) {
			return OP(OP(CAAR(n), CDR(n)), CADR(n));
		}
	}

	if (NMASK(n->op) & NM_IDEMPOTENT) {
		/* op(X, X) -> X */
		if (node_equiv(CAR(n), CDR(n))) return CAR(n);

		/* op(op(X, Y), X | Y) -> op(X, Y) */
		if (T(CAR(n), n->op) && (node_equiv(CDR(n), CAAR(n)) || node_equiv(CDR(n), CADR(n)))) {
			return CAR(n);
		}

		/* op(op(X, Y), op(X, Y)) -> op(X, Y) */
		if (T(CAR(n), n->op) && T(CDR(n), n->op) && node_equiv_input(CAR(n), CDR(n))) {
			return CAR(n);
		}

		/* op(phi(C, A, B), op(A, B)) -> op(A, B) */
		if (T(CAR(n), N_PHI) && T(CDR(n), n->op) && node_equiv_input(CAR(n), CDR(n))) {
			return CDR(n);
		}
		if (T(CDR(n), N_PHI) && T(CAR(n), n->op) && node_equiv_input(CAR(n), CDR(n))) {
			return CAR(n);
		}
	}

	/* optimize based on situations where the input is partly known (e.g.
	 * one constant input and one not, or identical inputs) */

	switch (n->op) {
	case N_OP_NOT:
		{
			NodeType op = node_cmp_opposite(CAR(n)->op);
			if (op != N_NONE) return NODE(op, CAAR(n), CADR(n));
		}
		/* fallthrough */
	case N_OP_NEG:
		if (T(CAR(n), n->op)) return CAAR(n);
		break;
	case N_OP_ADD:
		if (same) return NODE(N_OP_MUL, CAR(n), node_new_lit_i64(p, 2));
		if (CAR(n)->type.t == T_INT) {
			/* a + ~a = -1 */
			if (T(CAR(n), N_OP_NOT) && node_equiv(CAAR(n), CDR(n))) return node_new_lit_i64(p, -1);
			if (T(CDR(n), N_LIT) && CDR(n)->val.i < 0) return NODE(N_OP_SUB, CAR(n), node_new_lit_i64(p, -CDR(n)->val.i));
		}
		if (T(CAR(n), N_OP_NEG)) return NODE(N_OP_SUB, CDR(n), CAAR(n));
		if (T(CDR(n), N_OP_NEG)) return NODE(N_OP_SUB, CAR(n), CDAR(n));
		if (T(CAR(n), N_OP_SUB) && T(CDR(n), N_OP_SUB)
			&& node_equiv(CAAR(n), CDDR(n)) && node_equiv(CADR(n), CDAR(n))) {
			return node_new_lit_i64(p, 0);
		}
		goto zero_no_effect;
	case N_OP_SUB:
		if (same) return node_new_lit_i64(p, 0);
		if (node_eql_i64(CAR(n), 0)) return NODE(N_OP_NEG, CDR(n));
		if (node_eql_i64(CDR(n), 0)) return CAR(n);
		break;
	case N_OP_MUL:
		if (node_eql_i64(CDR(n), 0)) return CDR(n);
		if (node_eql_i64(CDR(n), 1)) return CAR(n);
		{
			int po2;
			if (T(CDR(n), N_LIT) && CDR(n)->type.t == T_INT && (po2 = u64_power_of_2(CDR(n)->val.u))) {;
				return NODE(N_OP_SHL, CAR(n), node_new_lit_i64(p, po2));
			}
		}
		break;
	case N_OP_DIV:
		if (node_eql_i64(CDR(n), 0)) {
		       lex_error_at(l, CDR(n)->src_pos, LE_ERROR, S("divisor always evaluates to zero"));
		}
		{
			// TODO: this only holds true for _unsigned_ integers
			/*
			int po2;
			if (T(CDR(n), N_LIT) && CDR(n)->type.t == T_INT && (po2 = u64_power_of_2(CDR(n)->val.u))) {;
				return NODE(N_OP_SHR, CAR(n), node_new_lit_i64(p, po2));
			}
			*/
		}
		break;
	case N_OP_OR:
		if (is_zero(CDR(n))) return CAR(n);
		if (BOOL_EQ(CDR(n), 1)) return CDR(n);
		if (CDR(n)->op == node_cmp_opposite(CAR(n)->op) && node_equiv_input(CAR(n), CDR(n))) {
			return node_new_lit_bool(p, 1);
		}
		if (T(CAR(n), N_CMP_LES) && T(CDR(n), N_CMP_EQL) && node_equiv_input(CAR(n), CDR(n))) {
			return NODE(N_CMP_LTE, CAAR(n), CADR(n));
		}
		if (T(CAR(n), N_CMP_EQL) && T(CDR(n), N_CMP_LES) && node_equiv_input(CAR(n), CDR(n))) {
			return NODE(N_CMP_LTE, CDAR(n), CDDR(n));
		}
		if (T(CAR(n), N_CMP_GTR) && T(CDR(n), N_CMP_EQL) && node_equiv_input(CAR(n), CDR(n))) {
			return NODE(N_CMP_GTE, CAAR(n), CADR(n));
		}
		if (T(CAR(n), N_CMP_EQL) && T(CDR(n), N_CMP_GTR) && node_equiv_input(CAR(n), CDR(n))) {
			return NODE(N_CMP_GTE, CDAR(n), CDDR(n));
		}
		goto zero_no_effect;
	case N_OP_AND:
		if (BOOL_EQ(CDR(n), 1)) return CAR(n);
		if (is_zero(CDR(n))) return node_new_zero(p, CDR(n));
		if (T(CAR(n), N_OP_NOT) && node_equiv(CAAR(n), CDR(n))) return node_new_zero(p, CDR(n));
		if (node_cmp_incompat(CAR(n)->op, CDR(n)->op) && node_equiv_input(CAR(n), CDR(n))) {
			return node_new_lit_bool(p, 0);
		}
		break;
	case N_OP_XOR:
		if (same) return node_new_zero(p, CAR(n));
		if (CDR(n)->op == node_cmp_opposite(CAR(n)->op) && node_equiv_input(CAR(n), CDR(n))) {
			return node_new_lit_bool(p, 1);
		}
		/* ~bool ^ bool = 1 */
		/* ~i64 ^ i64 = -1 */
		if (T(CAR(n), N_OP_NOT) && node_equiv(CAAR(n), CDR(n))) {
			if (CDR(n)->type.t == T_INT) return node_new_lit_i64(p, -1);
			if (CDR(n)->type.t == T_BOOL) return node_new_lit_bool(p, 1);
		}
zero_no_effect:	if (node_eql_i64(CAR(n), 0)) return CDR(n);
		if (node_eql_i64(CDR(n), 0)) return CAR(n);
		break;
	case N_CMP_EQL:
		if (same) return node_new_lit_bool(p, 1);
		if (node_known_not_equiv(CAR(n), CDR(n))) return node_new_lit_bool(p, 0);
		if (BOOL_EQ(CDR(n), 1)) return CAR(n);
		if (BOOL_EQ(CDR(n), 0)) return NODE(N_OP_NOT, CAR(n));
		if (T(CAR(n), N_OP_NOT) && node_equiv(CDR(n), CAAR(n))) return node_new_lit_bool(p, 0);
		if (((T(CAR(n), N_CMP_LTE) && T(CDR(n), N_CMP_GTE)) || (T(CAR(n), N_CMP_GTE) && T(CDR(n), N_CMP_LTE)))
				&& node_equiv_input(CAR(n), CDR(n))) {
			return NODE(N_CMP_EQL, CAAR(n), CADR(n));
		}
		break;
	case N_CMP_NEQ:
		if (same) return node_new_lit_bool(p, 0);
		if (node_known_not_equiv(CAR(n), CDR(n))) return node_new_lit_bool(p, 1);
		if (BOOL_EQ(CDR(n), 0)) return CAR(n);
		if (BOOL_EQ(CDR(n), 1)) return NODE(N_OP_NOT, CAR(n));
		break;
	case N_CMP_LES:
		if (same) return node_new_lit_bool(p, 0);
		break;
	case N_CMP_GTR:
		if (same) return node_new_lit_bool(p, 0);
		break;
	case N_CMP_LTE:
		if (same) return node_new_lit_bool(p, 1);
		break;
	case N_CMP_GTE:
		if (same) return node_new_lit_bool(p, 1);
		break;

	case N_IF_ELSE:
		if (T(CAR(n), N_LIT)) {
			if (CAR(n)->val.i) {
				n->val.tuple.data[1].type.lvl = T_XCTRL;
			} else {
				n->val.tuple.data[0].type.lvl = T_XCTRL;
			}
		}
		break;

	case N_RETURN:
		if (CTRL(n)->type.lvl == T_XCTRL) return CTRL(n);
		break;

	case N_PROJ:
		if (T(CTRL(n), N_IF_ELSE) && CTRL(n)->type.t == T_TUPLE) {
			if (CTRL(n)->val.tuple.data[n->val.i].type.lvl == T_XCTRL) {
				return node_new_lit(p, (Value) {
					.type = { .lvl = T_XCTRL, .t = T_NONE }
				});
			}
			if (CTRL(n)->val.tuple.data[(n->val.i + 1) % CTRL(n)->val.tuple.len].type.lvl == T_XCTRL) {
				return CTRL(CTRL(n));
			}
		}
		break;

	case N_PHI:
		if (same) return CAR(n);
		if (CTRL(n)->in.len == 2) {
			if (IN(CTRL(n), 1)->type.lvl == T_XCTRL) return CAR(n);
			if (IN(CTRL(n), 0)->type.lvl == T_XCTRL) return CDR(n);
		}
		break;

	case N_REGION: {
		int live_in = 0;
		for (u32 i = 0; i < n->in.len; i++) {
			if (IN(n, i)->type.lvl != T_XCTRL) live_in++;
		}
		if (live_in == 1) {
			for (u32 i = 0; i < n->in.len; i++) {
				if (IN(n, i)->type.lvl != T_XCTRL) {
					return IN(n, i);
				}
			}
		}
		if (live_in == 0) {
			return node_new_lit(p, (Value) {
				.type = { .lvl = T_XCTRL, .t = T_NONE }
			});
		}
	} break;

	case N_OP_SHL:
	case N_OP_SHR:
		/* a (<< | >>) 0 -> a */
		/* 0 (<< | >>) a -> 0 */
		if (node_eql_i64(CDR(n), 0) || node_eql_i64(CAR(n), 0)) return CAR(n);
		break;

	default:
		break;
	}

	if (NMASK(n->op) & NM_COMPARISON) {
		/* cmp(2a, a + b) -> cmp(a, b) */
		if (T(CAR(n), N_OP_SHL) && T(CDR(n), N_OP_ADD) && node_eql_i64(CADR(n), 1)) {
			if (node_equiv(CAAR(n), CDAR(n))) return NODE(n->op, CAAR(n), CDDR(n));
			if (node_equiv(CAAR(n), CDDR(n))) return NODE(n->op, CAAR(n), CDAR(n));
		}
		if (T(CDR(n), N_OP_SHL) && T(CAR(n), N_OP_ADD) && node_eql_i64(CDDR(n), 1)) {
			if (node_equiv(CDAR(n), CAAR(n))) return NODE(n->op, CDAR(n), CADR(n));
			if (node_equiv(CDAR(n), CADR(n))) return NODE(n->op, CDAR(n), CAAR(n));
		}
		/* cmp(a + b, a + c) -> cmp(b, c) */
		if ((NMASK(CAR(n)->op) & NM_ASSOCIATIVE) && T(CAR(n), CDR(n)->op)) {
			if (node_equiv(CAAR(n), CDAR(n))) return NODE(n->op, CADR(n), CDDR(n));
			if (node_equiv(CADR(n), CDAR(n))) return NODE(n->op, CAAR(n), CDDR(n));
			if (node_equiv(CAAR(n), CDDR(n))) return NODE(n->op, CADR(n), CDAR(n));
			if (node_equiv(CADR(n), CDDR(n))) return NODE(n->op, CAAR(n), CDAR(n));
		}
		if (T2(CAR(n), CDR(n), N_OP_SUB)) {
			/* cmp(a - b, b - a) -> cmp(a, b) */
			if (node_equiv(CAAR(n), CDDR(n)) && node_equiv(CADR(n), CDAR(n))) {
				return NODE(n->op, CAAR(n), CDAR(n));
			}
			/* cmp(a - b, c - b) -> flipcmp(a, c) */
			if (node_equiv(CAAR(n), CDAR(n))) {
				return NODE(node_cmp_flip_sign(n->op), CADR(n), CDDR(n));
			}
		}
		/* cmp(-a, -b) -> flipcmp(a, b) */
		if (T2(CAR(n), CDR(n), N_OP_NEG)) {
			return NODE(node_cmp_flip_sign(n->op), CAAR(n), CDAR(n));
		}
	}

	return NULL;
}

Node *node_peephole(Node *n, Graph *p, Lexer *l) {
	assert(n->refs > 0);
	Node *r = node_idealize(n, p, l);
	if (r) {
		r->src_pos = n->src_pos;
		NODE_KEEP(p, r, node_kill(n, p));
		return r;
	}
	/* FIXME: figure out why this shows the wrong position when in an assignment */
	return n;
}